Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpeq12 | Unicode version |
Description: Equality theorem for cross product. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
xpeq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 4359 | . 2 | |
2 | xpeq2 4360 | . 2 | |
3 | 1, 2 | sylan9eq 2092 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wceq 1243 cxp 4343 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-opab 3819 df-xp 4351 |
This theorem is referenced by: xpeq12i 4367 xpeq12d 4370 xpid11m 4557 xp11m 4759 |
Copyright terms: Public domain | W3C validator |