ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclri Structured version   Unicode version

Theorem vtoclri 2601
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
Hypotheses
Ref Expression
vtoclri.1
vtoclri.2
Assertion
Ref Expression
vtoclri
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem vtoclri
StepHypRef Expression
1 vtoclri.1 . 2
2 vtoclri.2 . . 3
32rspec 2347 . 2
41, 3vtoclga 2592 1
Colors of variables: wff set class
Syntax hints:   wi 4   wb 98   wceq 1226   wcel 1370  wral 2280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-10 1373  ax-11 1374  ax-i12 1375  ax-bnd 1376  ax-4 1377  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406  ax-ext 2000
This theorem depends on definitions:  df-bi 110  df-tru 1229  df-nf 1326  df-sb 1624  df-clab 2005  df-cleq 2011  df-clel 2014  df-nfc 2145  df-ral 2285  df-v 2533
This theorem is referenced by:  ordpwsucexmid  4226  bj-nn0suc0  7368
  Copyright terms: Public domain W3C validator