Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclf Unicode version

Theorem vtoclf 2607
 Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1640. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtoclf.1
vtoclf.2
vtoclf.3
vtoclf.4
Assertion
Ref Expression
vtoclf
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem vtoclf
StepHypRef Expression
1 vtoclf.1 . . 3
2 vtoclf.2 . . . . 5
32isseti 2563 . . . 4
4 vtoclf.3 . . . . 5
54biimpd 132 . . . 4
63, 5eximii 1493 . . 3
71, 619.36i 1562 . 2
8 vtoclf.4 . 2
97, 8mpg 1340 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98   wceq 1243  wnf 1349   wcel 1393  cvv 2557 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559 This theorem is referenced by:  vtocl  2608
 Copyright terms: Public domain W3C validator