![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtocldf | Unicode version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
vtocld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtocld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtocld.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
vtocldf.4 |
![]() ![]() ![]() ![]() |
vtocldf.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtocldf.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
vtocldf |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocldf.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | vtocldf.6 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | vtocldf.4 |
. . 3
![]() ![]() ![]() ![]() | |
4 | vtocld.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | ex 108 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | alrimi 1415 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | vtocld.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 3, 7 | alrimi 1415 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | vtocld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | vtoclgft 2604 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 1, 2, 6, 8, 9, 10 | syl221anc 1146 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 |
This theorem is referenced by: vtocld 2606 peano2 4318 iota2df 4891 |
Copyright terms: Public domain | W3C validator |