ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzin2 Unicode version

Theorem uzin2 9586
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin2  |-  ( ( A  e.  ran  ZZ>=  /\  B  e.  ran  ZZ>= )  -> 
( A  i^i  B
)  e.  ran  ZZ>= )

Proof of Theorem uzin2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 8476 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
2 ffn 5046 . . . 4  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
31, 2ax-mp 7 . . 3  |-  ZZ>=  Fn  ZZ
4 fvelrnb 5221 . . 3  |-  ( ZZ>=  Fn  ZZ  ->  ( A  e.  ran  ZZ>= 
<->  E. x  e.  ZZ  ( ZZ>= `  x )  =  A ) )
53, 4ax-mp 7 . 2  |-  ( A  e.  ran  ZZ>=  <->  E. x  e.  ZZ  ( ZZ>= `  x
)  =  A )
6 fvelrnb 5221 . . 3  |-  ( ZZ>=  Fn  ZZ  ->  ( B  e.  ran  ZZ>= 
<->  E. y  e.  ZZ  ( ZZ>= `  y )  =  B ) )
73, 6ax-mp 7 . 2  |-  ( B  e.  ran  ZZ>=  <->  E. y  e.  ZZ  ( ZZ>= `  y
)  =  B )
8 ineq1 3131 . . 3  |-  ( (
ZZ>= `  x )  =  A  ->  ( ( ZZ>=
`  x )  i^i  ( ZZ>= `  y )
)  =  ( A  i^i  ( ZZ>= `  y
) ) )
98eleq1d 2106 . 2  |-  ( (
ZZ>= `  x )  =  A  ->  ( (
( ZZ>= `  x )  i^i  ( ZZ>= `  y )
)  e.  ran  ZZ>=  <->  ( A  i^i  ( ZZ>= `  y )
)  e.  ran  ZZ>= ) )
10 ineq2 3132 . . 3  |-  ( (
ZZ>= `  y )  =  B  ->  ( A  i^i  ( ZZ>= `  y )
)  =  ( A  i^i  B ) )
1110eleq1d 2106 . 2  |-  ( (
ZZ>= `  y )  =  B  ->  ( ( A  i^i  ( ZZ>= `  y
) )  e.  ran  ZZ>=  <->  ( A  i^i  B )  e. 
ran  ZZ>= ) )
12 uzin 8505 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ZZ>= `  x
)  i^i  ( ZZ>= `  y ) )  =  ( ZZ>= `  if (
x  <_  y , 
y ,  x ) ) )
13 simpr 103 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  y  e.  ZZ )
14 simpl 102 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  e.  ZZ )
15 zdcle 8317 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  -> DECID  x  <_  y )
1613, 14, 15ifcldcd 3358 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  if ( x  <_ 
y ,  y ,  x )  e.  ZZ )
17 fnfvelrn 5299 . . . 4  |-  ( (
ZZ>=  Fn  ZZ  /\  if ( x  <_  y ,  y ,  x )  e.  ZZ )  -> 
( ZZ>= `  if (
x  <_  y , 
y ,  x ) )  e.  ran  ZZ>= )
183, 16, 17sylancr 393 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ZZ>= `  if (
x  <_  y , 
y ,  x ) )  e.  ran  ZZ>= )
1912, 18eqeltrd 2114 . 2  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ZZ>= `  x
)  i^i  ( ZZ>= `  y ) )  e. 
ran  ZZ>= )
205, 7, 9, 11, 192gencl 2587 1  |-  ( ( A  e.  ran  ZZ>=  /\  B  e.  ran  ZZ>= )  -> 
( A  i^i  B
)  e.  ran  ZZ>= )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   E.wrex 2307    i^i cin 2916   ifcif 3331   ~Pcpw 3359   class class class wbr 3764   ran crn 4346    Fn wfn 4897   -->wf 4898   ` cfv 4902    <_ cle 7061   ZZcz 8245   ZZ>=cuz 8473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474
This theorem is referenced by:  rexanuz  9587
  Copyright terms: Public domain W3C validator