ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniqs Unicode version

Theorem uniqs 6164
Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
Assertion
Ref Expression
uniqs  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )

Proof of Theorem uniqs
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecexg 6110 . . . . 5  |-  ( R  e.  V  ->  [ x ] R  e.  _V )
21ralrimivw 2393 . . . 4  |-  ( R  e.  V  ->  A. x  e.  A  [ x ] R  e.  _V )
3 dfiun2g 3689 . . . 4  |-  ( A. x  e.  A  [
x ] R  e. 
_V  ->  U_ x  e.  A  [ x ] R  =  U. { y  |  E. x  e.  A  y  =  [ x ] R } )
42, 3syl 14 . . 3  |-  ( R  e.  V  ->  U_ x  e.  A  [ x ] R  =  U. { y  |  E. x  e.  A  y  =  [ x ] R } )
54eqcomd 2045 . 2  |-  ( R  e.  V  ->  U. {
y  |  E. x  e.  A  y  =  [ x ] R }  =  U_ x  e.  A  [ x ] R )
6 df-qs 6112 . . 3  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
76unieqi 3590 . 2  |-  U. ( A /. R )  = 
U. { y  |  E. x  e.  A  y  =  [ x ] R }
8 df-ec 6108 . . . . 5  |-  [ x ] R  =  ( R " { x }
)
98a1i 9 . . . 4  |-  ( x  e.  A  ->  [ x ] R  =  ( R " { x }
) )
109iuneq2i 3675 . . 3  |-  U_ x  e.  A  [ x ] R  =  U_ x  e.  A  ( R " { x }
)
11 imaiun 5399 . . 3  |-  ( R
" U_ x  e.  A  { x } )  =  U_ x  e.  A  ( R " { x } )
12 iunid 3712 . . . 4  |-  U_ x  e.  A  { x }  =  A
1312imaeq2i 4666 . . 3  |-  ( R
" U_ x  e.  A  { x } )  =  ( R " A )
1410, 11, 133eqtr2ri 2067 . 2  |-  ( R
" A )  = 
U_ x  e.  A  [ x ] R
155, 7, 143eqtr4g 2097 1  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307   _Vcvv 2557   {csn 3375   U.cuni 3580   U_ciun 3657   "cima 4348   [cec 6104   /.cqs 6105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-xp 4351  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-ec 6108  df-qs 6112
This theorem is referenced by:  uniqs2  6166  ecqs  6168
  Copyright terms: Public domain W3C validator