ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unexb Unicode version

Theorem unexb 4177
Description: Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.)
Assertion
Ref Expression
unexb  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A  u.  B )  e.  _V )

Proof of Theorem unexb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3090 . . . 4  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
21eleq1d 2106 . . 3  |-  ( x  =  A  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
3 uneq2 3091 . . . 4  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
43eleq1d 2106 . . 3  |-  ( y  =  B  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
5 vex 2560 . . . 4  |-  x  e. 
_V
6 vex 2560 . . . 4  |-  y  e. 
_V
75, 6unex 4176 . . 3  |-  ( x  u.  y )  e. 
_V
82, 4, 7vtocl2g 2617 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  u.  B
)  e.  _V )
9 ssun1 3106 . . . 4  |-  A  C_  ( A  u.  B
)
10 ssexg 3896 . . . 4  |-  ( ( A  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  A  e.  _V )
119, 10mpan 400 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  A  e.  _V )
12 ssun2 3107 . . . 4  |-  B  C_  ( A  u.  B
)
13 ssexg 3896 . . . 4  |-  ( ( B  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  B  e.  _V )
1412, 13mpan 400 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  B  e.  _V )
1511, 14jca 290 . 2  |-  ( ( A  u.  B )  e.  _V  ->  ( A  e.  _V  /\  B  e.  _V ) )
168, 15impbii 117 1  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A  u.  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   _Vcvv 2557    u. cun 2915    C_ wss 2917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-uni 3581
This theorem is referenced by:  unexg  4178  sucexb  4223  frecabex  5984
  Copyright terms: Public domain W3C validator