ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unen Unicode version

Theorem unen 6293
Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
unen  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)

Proof of Theorem unen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6228 . . 3  |-  ( A 
~~  B  <->  E. x  x : A -1-1-onto-> B )
2 bren 6228 . . 3  |-  ( C 
~~  D  <->  E. y 
y : C -1-1-onto-> D )
3 eeanv 1807 . . . 4  |-  ( E. x E. y ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  <->  ( E. x  x : A -1-1-onto-> B  /\  E. y  y : C -1-1-onto-> D
) )
4 vex 2560 . . . . . . . 8  |-  x  e. 
_V
5 vex 2560 . . . . . . . 8  |-  y  e. 
_V
64, 5unex 4176 . . . . . . 7  |-  ( x  u.  y )  e. 
_V
7 f1oun 5146 . . . . . . 7  |-  ( ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( x  u.  y ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )
8 f1oen3g 6234 . . . . . . 7  |-  ( ( ( x  u.  y
)  e.  _V  /\  ( x  u.  y
) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
96, 7, 8sylancr 393 . . . . . 6  |-  ( ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
109ex 108 . . . . 5  |-  ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
1110exlimivv 1776 . . . 4  |-  ( E. x E. y ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
123, 11sylbir 125 . . 3  |-  ( ( E. x  x : A -1-1-onto-> B  /\  E. y 
y : C -1-1-onto-> D )  ->  ( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
131, 2, 12syl2anb 275 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  -> 
( A  u.  C
)  ~~  ( B  u.  D ) ) )
1413imp 115 1  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557    u. cun 2915    i^i cin 2916   (/)c0 3224   class class class wbr 3764   -1-1-onto->wf1o 4901    ~~ cen 6219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-en 6222
This theorem is referenced by:  phplem2  6316  fiunsnnn  6338  frecfzennn  9203
  Copyright terms: Public domain W3C validator