ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un00 Unicode version

Theorem un00 3263
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
un00  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )

Proof of Theorem un00
StepHypRef Expression
1 uneq12 3092 . . 3  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  u.  B )  =  ( (/)  u.  (/) ) )
2 un0 3251 . . 3  |-  ( (/)  u.  (/) )  =  (/)
31, 2syl6eq 2088 . 2  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  u.  B )  =  (/) )
4 ssun1 3106 . . . . 5  |-  A  C_  ( A  u.  B
)
5 sseq2 2967 . . . . 5  |-  ( ( A  u.  B )  =  (/)  ->  ( A 
C_  ( A  u.  B )  <->  A  C_  (/) ) )
64, 5mpbii 136 . . . 4  |-  ( ( A  u.  B )  =  (/)  ->  A  C_  (/) )
7 ss0b 3256 . . . 4  |-  ( A 
C_  (/)  <->  A  =  (/) )
86, 7sylib 127 . . 3  |-  ( ( A  u.  B )  =  (/)  ->  A  =  (/) )
9 ssun2 3107 . . . . 5  |-  B  C_  ( A  u.  B
)
10 sseq2 2967 . . . . 5  |-  ( ( A  u.  B )  =  (/)  ->  ( B 
C_  ( A  u.  B )  <->  B  C_  (/) ) )
119, 10mpbii 136 . . . 4  |-  ( ( A  u.  B )  =  (/)  ->  B  C_  (/) )
12 ss0b 3256 . . . 4  |-  ( B 
C_  (/)  <->  B  =  (/) )
1311, 12sylib 127 . . 3  |-  ( ( A  u.  B )  =  (/)  ->  B  =  (/) )
148, 13jca 290 . 2  |-  ( ( A  u.  B )  =  (/)  ->  ( A  =  (/)  /\  B  =  (/) ) )
153, 14impbii 117 1  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243    u. cun 2915    C_ wss 2917   (/)c0 3224
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225
This theorem is referenced by:  undisj1  3279  undisj2  3280  disjpr2  3434
  Copyright terms: Public domain W3C validator