Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12-2 Unicode version

Theorem tz6.12-2 5169
 Description: Function value when is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
tz6.12-2
Distinct variable groups:   ,   ,

Proof of Theorem tz6.12-2
StepHypRef Expression
1 df-fv 4910 . 2
2 iotanul 4882 . 2
31, 2syl5eq 2084 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wceq 1243  weu 1900  c0 3224   class class class wbr 3764  cio 4865  cfv 4902 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-nul 3225  df-sn 3381  df-uni 3581  df-iota 4867  df-fv 4910 This theorem is referenced by:  fvprc  5172  ndmfvg  5204  nfunsn  5207
 Copyright terms: Public domain W3C validator