ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tppreq3 Unicode version

Theorem tppreq3 3473
Description: An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
Assertion
Ref Expression
tppreq3  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B } )

Proof of Theorem tppreq3
StepHypRef Expression
1 tpeq3 3458 . . 3  |-  ( C  =  B  ->  { A ,  B ,  C }  =  { A ,  B ,  B } )
21eqcoms 2043 . 2  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B ,  B } )
3 tpidm23 3471 . 2  |-  { A ,  B ,  B }  =  { A ,  B }
42, 3syl6eq 2088 1  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243   {cpr 3376   {ctp 3377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3or 886  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-tp 3383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator