ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf2 Unicode version

Theorem tposf2 5883
Description: The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf2  |-  ( Rel 
A  ->  ( F : A --> B  -> tpos  F : `' A --> B ) )

Proof of Theorem tposf2
StepHypRef Expression
1 ffn 5046 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
2 dffn4 5112 . . . . . . 7  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
31, 2sylib 127 . . . . . 6  |-  ( F : A --> B  ->  F : A -onto-> ran  F
)
4 tposfo2 5882 . . . . . 6  |-  ( Rel 
A  ->  ( F : A -onto-> ran  F  -> tpos  F : `' A -onto-> ran  F ) )
53, 4syl5 28 . . . . 5  |-  ( Rel 
A  ->  ( F : A --> B  -> tpos  F : `' A -onto-> ran  F ) )
65imp 115 . . . 4  |-  ( ( Rel  A  /\  F : A --> B )  -> tpos  F : `' A -onto-> ran  F )
7 fof 5106 . . . 4  |-  (tpos  F : `' A -onto-> ran  F  -> tpos  F : `' A --> ran  F )
86, 7syl 14 . . 3  |-  ( ( Rel  A  /\  F : A --> B )  -> tpos  F : `' A --> ran  F
)
9 frn 5052 . . . 4  |-  ( F : A --> B  ->  ran  F  C_  B )
109adantl 262 . . 3  |-  ( ( Rel  A  /\  F : A --> B )  ->  ran  F  C_  B )
11 fss 5054 . . 3  |-  ( (tpos 
F : `' A --> ran  F  /\  ran  F  C_  B )  -> tpos  F : `' A --> B )
128, 10, 11syl2anc 391 . 2  |-  ( ( Rel  A  /\  F : A --> B )  -> tpos  F : `' A --> B )
1312ex 108 1  |-  ( Rel 
A  ->  ( F : A --> B  -> tpos  F : `' A --> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    C_ wss 2917   `'ccnv 4344   ran crn 4346   Rel wrel 4350    Fn wfn 4897   -->wf 4898   -onto->wfo 4900  tpos ctpos 5859
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fo 4908  df-fv 4910  df-tpos 5860
This theorem is referenced by:  tposf  5887
  Copyright terms: Public domain W3C validator