ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf12 Unicode version

Theorem tposf12 5884
Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf12  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )

Proof of Theorem tposf12
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 103 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  F : A -1-1-> B )
2 relcnv 4703 . . . . . . 7  |-  Rel  `' A
3 cnvf1o 5846 . . . . . . 7  |-  ( Rel  `' A  ->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-onto-> `' `' A )
4 f1of1 5125 . . . . . . 7  |-  ( ( x  e.  `' A  |-> 
U. `' { x } ) : `' A
-1-1-onto-> `' `' A  ->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A )
52, 3, 4mp2b 8 . . . . . 6  |-  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A
6 simpl 102 . . . . . . . 8  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  Rel  A )
7 dfrel2 4771 . . . . . . . 8  |-  ( Rel 
A  <->  `' `' A  =  A
)
86, 7sylib 127 . . . . . . 7  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  `' `' A  =  A
)
9 f1eq3 5089 . . . . . . 7  |-  ( `' `' A  =  A  ->  ( ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
108, 9syl 14 . . . . . 6  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
115, 10mpbii 136 . . . . 5  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A )
12 f1dm 5096 . . . . . . . 8  |-  ( F : A -1-1-> B  ->  dom  F  =  A )
131, 12syl 14 . . . . . . 7  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  dom  F  =  A )
1413cnveqd 4511 . . . . . 6  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  `' dom  F  =  `' A )
15 mpteq1 3841 . . . . . 6  |-  ( `' dom  F  =  `' A  ->  ( x  e.  `' dom  F  |->  U. `' { x } )  =  ( x  e.  `' A  |->  U. `' { x } ) )
16 f1eq1 5087 . . . . . 6  |-  ( ( x  e.  `' dom  F 
|->  U. `' { x } )  =  ( x  e.  `' A  |-> 
U. `' { x } )  ->  (
( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
1714, 15, 163syl 17 . . . . 5  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( ( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A  <->  ( x  e.  `' A  |-> 
U. `' { x } ) : `' A -1-1-> A ) )
1811, 17mpbird 156 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A )
19 f1co 5101 . . . 4  |-  ( ( F : A -1-1-> B  /\  ( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A )  -> 
( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) : `' A -1-1-> B )
201, 18, 19syl2anc 391 . . 3  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) : `' A -1-1-> B )
2112releqd 4424 . . . . 5  |-  ( F : A -1-1-> B  -> 
( Rel  dom  F  <->  Rel  A ) )
2221biimparc 283 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  Rel  dom  F )
23 dftpos2 5876 . . . 4  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
24 f1eq1 5087 . . . 4  |-  (tpos  F  =  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) )  -> 
(tpos  F : `' A -1-1-> B  <->  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) ) : `' A -1-1-> B ) )
2522, 23, 243syl 17 . . 3  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
(tpos  F : `' A -1-1-> B  <->  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) ) : `' A -1-1-> B ) )
2620, 25mpbird 156 . 2  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> tpos  F : `' A -1-1-> B
)
2726ex 108 1  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   {csn 3375   U.cuni 3580    |-> cmpt 3818   `'ccnv 4344   dom cdm 4345    o. ccom 4349   Rel wrel 4350   -1-1->wf1 4899   -1-1-onto->wf1o 4901  tpos ctpos 5859
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-1st 5767  df-2nd 5768  df-tpos 5860
This theorem is referenced by:  tposf1o2  5885
  Copyright terms: Public domain W3C validator