ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  th3qlem1 Unicode version

Theorem th3qlem1 6208
Description: Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The third hypothesis is the compatibility assumption. (Contributed by NM, 3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
th3qlem1.1  |-  .~  Er  S
th3qlem1.3  |-  ( ( ( y  e.  S  /\  w  e.  S
)  /\  ( z  e.  S  /\  v  e.  S ) )  -> 
( ( y  .~  w  /\  z  .~  v
)  ->  ( y  .+  z )  .~  (
w  .+  v )
) )
Assertion
Ref Expression
th3qlem1  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  ->  E* x E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )
)
Distinct variable groups:    x, y, z, w, v,  .+    x,  .~ , y, z, w, v    x, S, y, z, w, v   
x, A, y, z, w, v    x, B, y, z, w, v

Proof of Theorem th3qlem1
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ee4anv 1809 . . . 4  |-  ( E. y E. z E. w E. v ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ (
y  .+  z ) ]  .~  )  /\  (
( A  =  [
w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ ( w  .+  v ) ]  .~  ) )  <->  ( E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) ) )
2 an4 520 . . . . . . 7  |-  ( ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ (
y  .+  z ) ]  .~  )  /\  (
( A  =  [
w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ ( w  .+  v ) ]  .~  ) )  <->  ( (
( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) )  /\  (
x  =  [ ( y  .+  z ) ]  .~  /\  u  =  [ ( w  .+  v ) ]  .~  ) ) )
3 eleq1 2100 . . . . . . . . . . . . 13  |-  ( A  =  [ y ]  .~  ->  ( A  e.  ( S /.  .~  ) 
<->  [ y ]  .~  e.  ( S /.  .~  ) ) )
4 eleq1 2100 . . . . . . . . . . . . 13  |-  ( B  =  [ z ]  .~  ->  ( B  e.  ( S /.  .~  ) 
<->  [ z ]  .~  e.  ( S /.  .~  ) ) )
53, 4bi2anan9 538 . . . . . . . . . . . 12  |-  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  ->  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  <->  ( [
y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  ) ) ) )
65adantr 261 . . . . . . . . . . 11  |-  ( ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) )  ->  (
( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  <-> 
( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
) ) )
76biimpac 282 . . . . . . . . . 10  |-  ( ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  /\  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )  ->  ( [
y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  ) ) )
8 eqtr2 2058 . . . . . . . . . . . . 13  |-  ( ( A  =  [ y ]  .~  /\  A  =  [ w ]  .~  )  ->  [ y ]  .~  =  [ w ]  .~  )
9 eqtr2 2058 . . . . . . . . . . . . 13  |-  ( ( B  =  [ z ]  .~  /\  B  =  [ v ]  .~  )  ->  [ z ]  .~  =  [ v ]  .~  )
108, 9anim12i 321 . . . . . . . . . . . 12  |-  ( ( ( A  =  [
y ]  .~  /\  A  =  [ w ]  .~  )  /\  ( B  =  [ z ]  .~  /\  B  =  [ v ]  .~  ) )  ->  ( [ y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )
1110an4s 522 . . . . . . . . . . 11  |-  ( ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) )  ->  ( [ y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )
1211adantl 262 . . . . . . . . . 10  |-  ( ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  /\  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )  ->  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )
13 th3qlem1.1 . . . . . . . . . . . 12  |-  .~  Er  S
1413a1i 9 . . . . . . . . . . 11  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  .~  Er  S )
15 simprl 483 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ y ]  .~  =  [
w ]  .~  )
16 erdm 6116 . . . . . . . . . . . . . . . 16  |-  (  .~  Er  S  ->  dom  .~  =  S )
1713, 16ax-mp 7 . . . . . . . . . . . . . . 15  |-  dom  .~  =  S
18 simpll 481 . . . . . . . . . . . . . . 15  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ y ]  .~  e.  ( S /.  .~  )
)
19 ecelqsdm 6176 . . . . . . . . . . . . . . 15  |-  ( ( dom  .~  =  S  /\  [ y ]  .~  e.  ( S /.  .~  ) )  ->  y  e.  S
)
2017, 18, 19sylancr 393 . . . . . . . . . . . . . 14  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  y  e.  S )
2114, 20erth 6150 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  (
y  .~  w  <->  [ y ]  .~  =  [ w ]  .~  ) )
2215, 21mpbird 156 . . . . . . . . . . . 12  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  y  .~  w )
23 simprr 484 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ z ]  .~  =  [
v ]  .~  )
24 simplr 482 . . . . . . . . . . . . . . 15  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ z ]  .~  e.  ( S /.  .~  )
)
25 ecelqsdm 6176 . . . . . . . . . . . . . . 15  |-  ( ( dom  .~  =  S  /\  [ z ]  .~  e.  ( S /.  .~  ) )  ->  z  e.  S
)
2617, 24, 25sylancr 393 . . . . . . . . . . . . . 14  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  z  e.  S )
2714, 26erth 6150 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  (
z  .~  v  <->  [ z ]  .~  =  [ v ]  .~  ) )
2823, 27mpbird 156 . . . . . . . . . . . 12  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  z  .~  v )
2915, 18eqeltrrd 2115 . . . . . . . . . . . . . 14  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ w ]  .~  e.  ( S /.  .~  ) )
30 ecelqsdm 6176 . . . . . . . . . . . . . 14  |-  ( ( dom  .~  =  S  /\  [ w ]  .~  e.  ( S /.  .~  ) )  ->  w  e.  S )
3117, 29, 30sylancr 393 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  w  e.  S )
3223, 24eqeltrrd 2115 . . . . . . . . . . . . . 14  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ v ]  .~  e.  ( S /.  .~  )
)
33 ecelqsdm 6176 . . . . . . . . . . . . . 14  |-  ( ( dom  .~  =  S  /\  [ v ]  .~  e.  ( S /.  .~  ) )  ->  v  e.  S
)
3417, 32, 33sylancr 393 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  v  e.  S )
35 th3qlem1.3 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  S  /\  w  e.  S
)  /\  ( z  e.  S  /\  v  e.  S ) )  -> 
( ( y  .~  w  /\  z  .~  v
)  ->  ( y  .+  z )  .~  (
w  .+  v )
) )
3620, 31, 26, 34, 35syl22anc 1136 . . . . . . . . . . . 12  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  (
( y  .~  w  /\  z  .~  v
)  ->  ( y  .+  z )  .~  (
w  .+  v )
) )
3722, 28, 36mp2and 409 . . . . . . . . . . 11  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  (
y  .+  z )  .~  ( w  .+  v
) )
3814, 37erthi 6152 . . . . . . . . . 10  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ ( y  .+  z ) ]  .~  =  [
( w  .+  v
) ]  .~  )
397, 12, 38syl2anc 391 . . . . . . . . 9  |-  ( ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  /\  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )  ->  [ (
y  .+  z ) ]  .~  =  [ ( w  .+  v ) ]  .~  )
40 eqeq12 2052 . . . . . . . . 9  |-  ( ( x  =  [ ( y  .+  z ) ]  .~  /\  u  =  [ ( w  .+  v ) ]  .~  )  ->  ( x  =  u  <->  [ ( y  .+  z ) ]  .~  =  [ ( w  .+  v ) ]  .~  ) )
4139, 40syl5ibrcom 146 . . . . . . . 8  |-  ( ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  /\  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )  ->  ( (
x  =  [ ( y  .+  z ) ]  .~  /\  u  =  [ ( w  .+  v ) ]  .~  )  ->  x  =  u ) )
4241expimpd 345 . . . . . . 7  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) )  /\  ( x  =  [ ( y  .+  z ) ]  .~  /\  u  =  [ ( w  .+  v ) ]  .~  ) )  ->  x  =  u ) )
432, 42syl5bi 141 . . . . . 6  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  ( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
4443exlimdvv 1777 . . . . 5  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( E. w E. v ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  ( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
4544exlimdvv 1777 . . . 4  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( E. y E. z E. w E. v ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  ( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
461, 45syl5bir 142 . . 3  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( ( E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
4746alrimivv 1755 . 2  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  ->  A. x A. u ( ( E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
48 eqeq1 2046 . . . . . 6  |-  ( x  =  u  ->  (
x  =  [ ( y  .+  z ) ]  .~  <->  u  =  [ ( y  .+  z ) ]  .~  ) )
4948anbi2d 437 . . . . 5  |-  ( x  =  u  ->  (
( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ (
y  .+  z ) ]  .~  )  <->  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  u  =  [
( y  .+  z
) ]  .~  )
) )
50492exbidv 1748 . . . 4  |-  ( x  =  u  ->  ( E. y E. z ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ ( y  .+  z ) ]  .~  ) 
<->  E. y E. z
( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  u  =  [ (
y  .+  z ) ]  .~  ) ) )
51 eceq1 6141 . . . . . . . 8  |-  ( y  =  w  ->  [ y ]  .~  =  [
w ]  .~  )
5251eqeq2d 2051 . . . . . . 7  |-  ( y  =  w  ->  ( A  =  [ y ]  .~  <->  A  =  [
w ]  .~  )
)
53 eceq1 6141 . . . . . . . 8  |-  ( z  =  v  ->  [ z ]  .~  =  [
v ]  .~  )
5453eqeq2d 2051 . . . . . . 7  |-  ( z  =  v  ->  ( B  =  [ z ]  .~  <->  B  =  [
v ]  .~  )
)
5552, 54bi2anan9 538 . . . . . 6  |-  ( ( y  =  w  /\  z  =  v )  ->  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  <->  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )
56 oveq12 5521 . . . . . . . 8  |-  ( ( y  =  w  /\  z  =  v )  ->  ( y  .+  z
)  =  ( w 
.+  v ) )
5756eceq1d 6142 . . . . . . 7  |-  ( ( y  =  w  /\  z  =  v )  ->  [ ( y  .+  z ) ]  .~  =  [ ( w  .+  v ) ]  .~  )
5857eqeq2d 2051 . . . . . 6  |-  ( ( y  =  w  /\  z  =  v )  ->  ( u  =  [
( y  .+  z
) ]  .~  <->  u  =  [ ( w  .+  v ) ]  .~  ) )
5955, 58anbi12d 442 . . . . 5  |-  ( ( y  =  w  /\  z  =  v )  ->  ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  u  =  [
( y  .+  z
) ]  .~  )  <->  ( ( A  =  [
w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ ( w  .+  v ) ]  .~  ) ) )
6059cbvex2v 1799 . . . 4  |-  ( E. y E. z ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  u  =  [ ( y  .+  z ) ]  .~  ) 
<->  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )
6150, 60syl6bb 185 . . 3  |-  ( x  =  u  ->  ( E. y E. z ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ ( y  .+  z ) ]  .~  ) 
<->  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) ) )
6261mo4 1961 . 2  |-  ( E* x E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  <->  A. x A. u ( ( E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
6347, 62sylibr 137 1  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  ->  E* x E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241    = wceq 1243   E.wex 1381    e. wcel 1393   E*wmo 1901   class class class wbr 3764   dom cdm 4345  (class class class)co 5512    Er wer 6103   [cec 6104   /.cqs 6105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fv 4910  df-ov 5515  df-er 6106  df-ec 6108  df-qs 6112
This theorem is referenced by:  th3qlem2  6209
  Copyright terms: Public domain W3C validator