Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6eqssr Unicode version

Theorem syl6eqssr 2996
 Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
syl6eqssr.1
syl6eqssr.2
Assertion
Ref Expression
syl6eqssr

Proof of Theorem syl6eqssr
StepHypRef Expression
1 syl6eqssr.1 . . 3
21eqcomd 2045 . 2
3 syl6eqssr.2 . 2
42, 3syl6eqss 2995 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1243   wss 2917 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931 This theorem is referenced by:  ffvresb  5328  tposss  5861  iooval2  8784
 Copyright terms: Public domain W3C validator