ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2ani Unicode version

Theorem syl2ani 388
Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.)
Hypotheses
Ref Expression
syl2ani.1  |-  ( ph  ->  ch )
syl2ani.2  |-  ( et 
->  th )
syl2ani.3  |-  ( ps 
->  ( ( ch  /\  th )  ->  ta )
)
Assertion
Ref Expression
syl2ani  |-  ( ps 
->  ( ( ph  /\  et )  ->  ta )
)

Proof of Theorem syl2ani
StepHypRef Expression
1 syl2ani.1 . 2  |-  ( ph  ->  ch )
2 syl2ani.2 . . 3  |-  ( et 
->  th )
3 syl2ani.3 . . 3  |-  ( ps 
->  ( ( ch  /\  th )  ->  ta )
)
42, 3sylan2i 387 . 2  |-  ( ps 
->  ( ( ch  /\  et )  ->  ta )
)
51, 4sylani 386 1  |-  ( ps 
->  ( ( ph  /\  et )  ->  ta )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator