![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl2anbr | Unicode version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anbr.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2anbr.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2anbr.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl2anbr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anbr.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl2anbr.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl2anbr.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylanbr 269 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | sylan2br 272 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: sylancbr 396 tz6.12 5144 ltresr 6736 divmuldivap 7470 fnn0ind 8130 |
Copyright terms: Public domain | W3C validator |