ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2anbr Unicode version

Theorem syl2anbr 276
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1
syl2anbr.2
syl2anbr.3
Assertion
Ref Expression
syl2anbr

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2
2 syl2anbr.1 . . 3
3 syl2anbr.3 . . 3
42, 3sylanbr 269 . 2
51, 4sylan2br 272 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  sylancbr  396  tz6.12  5144  ltresr  6736  divmuldivap  7470  fnn0ind  8130
  Copyright terms: Public domain W3C validator