ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swopo Unicode version

Theorem swopo 4043
Description: A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
swopo.1  |-  ( (
ph  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( y R z  ->  -.  z R
y ) )
swopo.2  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( x R y  ->  ( x R z  \/  z R y ) ) )
Assertion
Ref Expression
swopo  |-  ( ph  ->  R  Po  A )
Distinct variable groups:    x, y, z, A    x, R, y, z    ph, x, y, z

Proof of Theorem swopo
StepHypRef Expression
1 id 19 . . . . 5  |-  ( x  e.  A  ->  x  e.  A )
21ancli 306 . . . 4  |-  ( x  e.  A  ->  (
x  e.  A  /\  x  e.  A )
)
3 swopo.1 . . . . 5  |-  ( (
ph  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( y R z  ->  -.  z R
y ) )
43ralrimivva 2401 . . . 4  |-  ( ph  ->  A. y  e.  A  A. z  e.  A  ( y R z  ->  -.  z R
y ) )
5 breq1 3767 . . . . . 6  |-  ( y  =  x  ->  (
y R z  <->  x R
z ) )
6 breq2 3768 . . . . . . 7  |-  ( y  =  x  ->  (
z R y  <->  z R x ) )
76notbid 592 . . . . . 6  |-  ( y  =  x  ->  ( -.  z R y  <->  -.  z R x ) )
85, 7imbi12d 223 . . . . 5  |-  ( y  =  x  ->  (
( y R z  ->  -.  z R
y )  <->  ( x R z  ->  -.  z R x ) ) )
9 breq2 3768 . . . . . 6  |-  ( z  =  x  ->  (
x R z  <->  x R x ) )
10 breq1 3767 . . . . . . 7  |-  ( z  =  x  ->  (
z R x  <->  x R x ) )
1110notbid 592 . . . . . 6  |-  ( z  =  x  ->  ( -.  z R x  <->  -.  x R x ) )
129, 11imbi12d 223 . . . . 5  |-  ( z  =  x  ->  (
( x R z  ->  -.  z R x )  <->  ( x R x  ->  -.  x R x ) ) )
138, 12rspc2va 2663 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  A
)  /\  A. y  e.  A  A. z  e.  A  ( y R z  ->  -.  z R y ) )  ->  ( x R x  ->  -.  x R x ) )
142, 4, 13syl2anr 274 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
x R x  ->  -.  x R x ) )
1514pm2.01d 548 . 2  |-  ( (
ph  /\  x  e.  A )  ->  -.  x R x )
1633adantr1 1063 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( y R z  ->  -.  z R
y ) )
17 swopo.2 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( x R y  ->  ( x R z  \/  z R y ) ) )
1817imp 115 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)  /\  x R
y )  ->  (
x R z  \/  z R y ) )
1918orcomd 648 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)  /\  x R
y )  ->  (
z R y  \/  x R z ) )
2019ord 643 . . . 4  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)  /\  x R
y )  ->  ( -.  z R y  ->  x R z ) )
2120expimpd 345 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x R y  /\  -.  z R y )  ->  x R z ) )
2216, 21sylan2d 278 . 2  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x R y  /\  y R z )  ->  x R z ) )
2315, 22ispod 4041 1  |-  ( ph  ->  R  Po  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    \/ wo 629    /\ w3a 885    e. wcel 1393   A.wral 2306   class class class wbr 3764    Po wpo 4031
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-po 4033
This theorem is referenced by:  swoer  6134
  Copyright terms: Public domain W3C validator