ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssof1 Unicode version

Theorem suppssof1 5728
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssof1.s  |-  ( ph  ->  ( `' A "
( _V  \  { Y } ) )  C_  L )
suppssof1.o  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
suppssof1.a  |-  ( ph  ->  A : D --> V )
suppssof1.b  |-  ( ph  ->  B : D --> R )
suppssof1.d  |-  ( ph  ->  D  e.  W )
Assertion
Ref Expression
suppssof1  |-  ( ph  ->  ( `' ( A  oF O B ) " ( _V 
\  { Z }
) )  C_  L
)
Distinct variable groups:    ph, v    v, B    v, O    v, R    v, Y    v, Z
Allowed substitution hints:    A( v)    D( v)    L( v)    V( v)    W( v)

Proof of Theorem suppssof1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 suppssof1.a . . . . . 6  |-  ( ph  ->  A : D --> V )
2 ffn 5046 . . . . . 6  |-  ( A : D --> V  ->  A  Fn  D )
31, 2syl 14 . . . . 5  |-  ( ph  ->  A  Fn  D )
4 suppssof1.b . . . . . 6  |-  ( ph  ->  B : D --> R )
5 ffn 5046 . . . . . 6  |-  ( B : D --> R  ->  B  Fn  D )
64, 5syl 14 . . . . 5  |-  ( ph  ->  B  Fn  D )
7 suppssof1.d . . . . 5  |-  ( ph  ->  D  e.  W )
8 inidm 3146 . . . . 5  |-  ( D  i^i  D )  =  D
9 eqidd 2041 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  ( A `  x )  =  ( A `  x ) )
10 eqidd 2041 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  ( B `  x )  =  ( B `  x ) )
113, 6, 7, 7, 8, 9, 10offval 5719 . . . 4  |-  ( ph  ->  ( A  oF O B )  =  ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) ) )
1211cnveqd 4511 . . 3  |-  ( ph  ->  `' ( A  oF O B )  =  `' ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) ) )
1312imaeq1d 4667 . 2  |-  ( ph  ->  ( `' ( A  oF O B ) " ( _V 
\  { Z }
) )  =  ( `' ( x  e.  D  |->  ( ( A `
 x ) O ( B `  x
) ) ) "
( _V  \  { Z } ) ) )
141feqmptd 5226 . . . . . 6  |-  ( ph  ->  A  =  ( x  e.  D  |->  ( A `
 x ) ) )
1514cnveqd 4511 . . . . 5  |-  ( ph  ->  `' A  =  `' ( x  e.  D  |->  ( A `  x
) ) )
1615imaeq1d 4667 . . . 4  |-  ( ph  ->  ( `' A "
( _V  \  { Y } ) )  =  ( `' ( x  e.  D  |->  ( A `
 x ) )
" ( _V  \  { Y } ) ) )
17 suppssof1.s . . . 4  |-  ( ph  ->  ( `' A "
( _V  \  { Y } ) )  C_  L )
1816, 17eqsstr3d 2980 . . 3  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A `
 x ) )
" ( _V  \  { Y } ) ) 
C_  L )
19 suppssof1.o . . 3  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
20 funfvex 5192 . . . . 5  |-  ( ( Fun  A  /\  x  e.  dom  A )  -> 
( A `  x
)  e.  _V )
2120funfni 4999 . . . 4  |-  ( ( A  Fn  D  /\  x  e.  D )  ->  ( A `  x
)  e.  _V )
223, 21sylan 267 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( A `  x )  e.  _V )
234ffvelrnda 5302 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( B `  x )  e.  R )
2418, 19, 22, 23suppssov1 5709 . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) )
" ( _V  \  { Z } ) ) 
C_  L )
2513, 24eqsstrd 2979 1  |-  ( ph  ->  ( `' ( A  oF O B ) " ( _V 
\  { Z }
) )  C_  L
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   _Vcvv 2557    \ cdif 2914    C_ wss 2917   {csn 3375    |-> cmpt 3818   `'ccnv 4344   "cima 4348    Fn wfn 4897   -->wf 4898   ` cfv 4902  (class class class)co 5512    oFcof 5710
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-of 5712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator