Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucinc2 | Unicode version |
Description: Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.) |
Ref | Expression |
---|---|
sucinc.1 |
Ref | Expression |
---|---|
sucinc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4112 | . . . . 5 | |
2 | ordsucss 4230 | . . . . 5 | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | 3 | imp 115 | . . 3 |
5 | sssucid 4152 | . . 3 | |
6 | 4, 5 | syl6ss 2957 | . 2 |
7 | onelon 4121 | . . 3 | |
8 | elex 2566 | . . . 4 | |
9 | sucexg 4224 | . . . 4 | |
10 | suceq 4139 | . . . . 5 | |
11 | sucinc.1 | . . . . 5 | |
12 | 10, 11 | fvmptg 5248 | . . . 4 |
13 | 8, 9, 12 | syl2anc 391 | . . 3 |
14 | 7, 13 | syl 14 | . 2 |
15 | elex 2566 | . . . 4 | |
16 | sucexg 4224 | . . . 4 | |
17 | suceq 4139 | . . . . 5 | |
18 | 17, 11 | fvmptg 5248 | . . . 4 |
19 | 15, 16, 18 | syl2anc 391 | . . 3 |
20 | 19 | adantr 261 | . 2 |
21 | 6, 14, 20 | 3sstr4d 2988 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wceq 1243 wcel 1393 cvv 2557 wss 2917 cmpt 3818 word 4099 con0 4100 csuc 4102 cfv 4902 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fv 4910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |