ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submul2 Unicode version

Theorem submul2 7396
Description: Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
submul2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  x.  C ) )  =  ( A  +  ( B  x.  -u C
) ) )

Proof of Theorem submul2
StepHypRef Expression
1 mulneg2 7393 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  -u C
)  =  -u ( B  x.  C )
)
21adantl 262 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( B  x.  -u C )  = 
-u ( B  x.  C ) )
32oveq2d 5528 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( A  +  ( B  x.  -u C ) )  =  ( A  +  -u ( B  x.  C
) ) )
4 mulcl 7008 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  e.  CC )
5 negsub 7259 . . . 4  |-  ( ( A  e.  CC  /\  ( B  x.  C
)  e.  CC )  ->  ( A  +  -u ( B  x.  C
) )  =  ( A  -  ( B  x.  C ) ) )
64, 5sylan2 270 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( A  +  -u ( B  x.  C ) )  =  ( A  -  ( B  x.  C )
) )
73, 6eqtr2d 2073 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( A  -  ( B  x.  C ) )  =  ( A  +  ( B  x.  -u C
) ) )
873impb 1100 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  x.  C ) )  =  ( A  +  ( B  x.  -u C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    = wceq 1243    e. wcel 1393  (class class class)co 5512   CCcc 6887    + caddc 6892    x. cmul 6894    - cmin 7182   -ucneg 7183
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262  ax-resscn 6976  ax-1cn 6977  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-sub 7184  df-neg 7185
This theorem is referenced by:  cjap  9506
  Copyright terms: Public domain W3C validator