ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxpbm Unicode version

Theorem ssxpbm 4756
Description: A cross-product subclass relationship is equivalent to the relationship for its components. (Contributed by Jim Kingdon, 12-Dec-2018.)
Assertion
Ref Expression
ssxpbm  |-  ( E. x  x  e.  ( A  X.  B )  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  <->  ( A  C_  C  /\  B  C_  D
) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    C( x)    D( x)

Proof of Theorem ssxpbm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpm 4745 . . . . . . . 8  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. x  x  e.  ( A  X.  B
) )
2 dmxpm 4555 . . . . . . . . 9  |-  ( E. b  b  e.  B  ->  dom  ( A  X.  B )  =  A )
32adantl 262 . . . . . . . 8  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  ->  dom  ( A  X.  B )  =  A )
41, 3sylbir 125 . . . . . . 7  |-  ( E. x  x  e.  ( A  X.  B )  ->  dom  ( A  X.  B )  =  A )
54adantr 261 . . . . . 6  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  dom  ( A  X.  B )  =  A )
6 dmss 4534 . . . . . . 7  |-  ( ( A  X.  B ) 
C_  ( C  X.  D )  ->  dom  ( A  X.  B
)  C_  dom  ( C  X.  D ) )
76adantl 262 . . . . . 6  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  dom  ( A  X.  B )  C_  dom  ( C  X.  D
) )
85, 7eqsstr3d 2980 . . . . 5  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  A  C_  dom  ( C  X.  D
) )
9 dmxpss 4753 . . . . 5  |-  dom  ( C  X.  D )  C_  C
108, 9syl6ss 2957 . . . 4  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  A  C_  C
)
11 rnxpm 4752 . . . . . . . . 9  |-  ( E. a  a  e.  A  ->  ran  ( A  X.  B )  =  B )
1211adantr 261 . . . . . . . 8  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  ->  ran  ( A  X.  B )  =  B )
131, 12sylbir 125 . . . . . . 7  |-  ( E. x  x  e.  ( A  X.  B )  ->  ran  ( A  X.  B )  =  B )
1413adantr 261 . . . . . 6  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  ran  ( A  X.  B )  =  B )
15 rnss 4564 . . . . . . 7  |-  ( ( A  X.  B ) 
C_  ( C  X.  D )  ->  ran  ( A  X.  B
)  C_  ran  ( C  X.  D ) )
1615adantl 262 . . . . . 6  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  ran  ( A  X.  B )  C_  ran  ( C  X.  D
) )
1714, 16eqsstr3d 2980 . . . . 5  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  B  C_  ran  ( C  X.  D
) )
18 rnxpss 4754 . . . . 5  |-  ran  ( C  X.  D )  C_  D
1917, 18syl6ss 2957 . . . 4  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  B  C_  D
)
2010, 19jca 290 . . 3  |-  ( ( E. x  x  e.  ( A  X.  B
)  /\  ( A  X.  B )  C_  ( C  X.  D ) )  ->  ( A  C_  C  /\  B  C_  D
) )
2120ex 108 . 2  |-  ( E. x  x  e.  ( A  X.  B )  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  ->  ( A  C_  C  /\  B  C_  D ) ) )
22 xpss12 4445 . 2  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( A  X.  B
)  C_  ( C  X.  D ) )
2321, 22impbid1 130 1  |-  ( E. x  x  e.  ( A  X.  B )  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  <->  ( A  C_  C  /\  B  C_  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393    C_ wss 2917    X. cxp 4343   dom cdm 4345   ran crn 4346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356
This theorem is referenced by:  xp11m  4759
  Copyright terms: Public domain W3C validator