Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssoprab2 | Unicode version |
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 4012. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
ssoprab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . . . . . . 10 | |
2 | 1 | anim2d 320 | . . . . . . . . 9 |
3 | 2 | alimi 1344 | . . . . . . . 8 |
4 | exim 1490 | . . . . . . . 8 | |
5 | 3, 4 | syl 14 | . . . . . . 7 |
6 | 5 | alimi 1344 | . . . . . 6 |
7 | exim 1490 | . . . . . 6 | |
8 | 6, 7 | syl 14 | . . . . 5 |
9 | 8 | alimi 1344 | . . . 4 |
10 | exim 1490 | . . . 4 | |
11 | 9, 10 | syl 14 | . . 3 |
12 | 11 | ss2abdv 3013 | . 2 |
13 | df-oprab 5516 | . 2 | |
14 | df-oprab 5516 | . 2 | |
15 | 12, 13, 14 | 3sstr4g 2986 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wal 1241 wceq 1243 wex 1381 cab 2026 wss 2917 cop 3378 coprab 5513 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-in 2924 df-ss 2931 df-oprab 5516 |
This theorem is referenced by: ssoprab2b 5562 |
Copyright terms: Public domain | W3C validator |