Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssnel | Unicode version |
Description: Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.) |
Ref | Expression |
---|---|
ssnel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4266 | . 2 | |
2 | ssel 2939 | . 2 | |
3 | 1, 2 | mtoi 590 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wcel 1393 wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-sn 3381 |
This theorem is referenced by: nntri1 6074 |
Copyright terms: Public domain | W3C validator |