Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssint | Unicode version |
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
ssint |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 2935 | . 2 | |
2 | vex 2560 | . . . 4 | |
3 | 2 | elint2 3622 | . . 3 |
4 | 3 | ralbii 2330 | . 2 |
5 | ralcom 2473 | . . 3 | |
6 | dfss3 2935 | . . . 4 | |
7 | 6 | ralbii 2330 | . . 3 |
8 | 5, 7 | bitr4i 176 | . 2 |
9 | 1, 4, 8 | 3bitri 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wcel 1393 wral 2306 wss 2917 cint 3615 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-in 2924 df-ss 2931 df-int 3616 |
This theorem is referenced by: ssintab 3632 ssintub 3633 iinpw 3742 trint 3869 fintm 5075 bj-ssom 10060 |
Copyright terms: Public domain | W3C validator |