ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2gt1lt2 Unicode version

Theorem sqrt2gt1lt2 9647
Description: The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.)
Assertion
Ref Expression
sqrt2gt1lt2  |-  ( 1  <  ( sqr `  2
)  /\  ( sqr `  2 )  <  2
)

Proof of Theorem sqrt2gt1lt2
StepHypRef Expression
1 sqrt1 9644 . . 3  |-  ( sqr `  1 )  =  1
2 1lt2 8086 . . . 4  |-  1  <  2
3 1re 7026 . . . . 5  |-  1  e.  RR
4 0le1 7476 . . . . 5  |-  0  <_  1
5 2re 7985 . . . . 5  |-  2  e.  RR
6 0le2 8006 . . . . 5  |-  0  <_  2
7 sqrtlt 9635 . . . . 5  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 2  e.  RR  /\  0  <_ 
2 ) )  -> 
( 1  <  2  <->  ( sqr `  1 )  <  ( sqr `  2
) ) )
83, 4, 5, 6, 7mp4an 403 . . . 4  |-  ( 1  <  2  <->  ( sqr `  1 )  <  ( sqr `  2 ) )
92, 8mpbi 133 . . 3  |-  ( sqr `  1 )  < 
( sqr `  2
)
101, 9eqbrtrri 3785 . 2  |-  1  <  ( sqr `  2
)
11 2lt4 8090 . . . 4  |-  2  <  4
12 4re 7992 . . . . 5  |-  4  e.  RR
13 0re 7027 . . . . . 6  |-  0  e.  RR
14 4pos 8013 . . . . . 6  |-  0  <  4
1513, 12, 14ltleii 7120 . . . . 5  |-  0  <_  4
16 sqrtlt 9635 . . . . 5  |-  ( ( ( 2  e.  RR  /\  0  <_  2 )  /\  ( 4  e.  RR  /\  0  <_ 
4 ) )  -> 
( 2  <  4  <->  ( sqr `  2 )  <  ( sqr `  4
) ) )
175, 6, 12, 15, 16mp4an 403 . . . 4  |-  ( 2  <  4  <->  ( sqr `  2 )  <  ( sqr `  4 ) )
1811, 17mpbi 133 . . 3  |-  ( sqr `  2 )  < 
( sqr `  4
)
19 sqrt4 9645 . . 3  |-  ( sqr `  4 )  =  2
2018, 19breqtri 3787 . 2  |-  ( sqr `  2 )  <  2
2110, 20pm3.2i 257 1  |-  ( 1  <  ( sqr `  2
)  /\  ( sqr `  2 )  <  2
)
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    e. wcel 1393   class class class wbr 3764   ` cfv 4902   RRcr 6888   0cc0 6889   1c1 6890    < clt 7060    <_ cle 7061   2c2 7964   4c4 7966   sqrcsqrt 9594
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003  ax-caucvg 7004
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255  df-rsqrt 9596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator