ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spim Unicode version

Theorem spim 1623
Description: Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 1623 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
Hypotheses
Ref Expression
spim.1  F/
spim.2
Assertion
Ref Expression
spim

Proof of Theorem spim
StepHypRef Expression
1 spim.1 . . 3  F/
21nfri 1409 . 2
3 spim.2 . 2
42, 3spimh 1622 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1240   F/wnf 1346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-nf 1347
This theorem is referenced by:  cbv3  1627  chvar  1637  spimv  1689  2spim  9241
  Copyright terms: Public domain W3C validator