ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soirri Unicode version

Theorem soirri 4719
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
soirri  |-  -.  A R A

Proof of Theorem soirri
StepHypRef Expression
1 id 19 . 2  |-  ( A R A  ->  A R A )
2 soi.1 . . 3  |-  R  Or  S
3 soi.2 . . . . 5  |-  R  C_  ( S  X.  S
)
43brel 4392 . . . 4  |-  ( A R A  ->  ( A  e.  S  /\  A  e.  S )
)
54simpld 105 . . 3  |-  ( A R A  ->  A  e.  S )
6 sonr 4054 . . 3  |-  ( ( R  Or  S  /\  A  e.  S )  ->  -.  A R A )
72, 5, 6sylancr 393 . 2  |-  ( A R A  ->  -.  A R A )
81, 7pm2.65i 568 1  |-  -.  A R A
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1393    C_ wss 2917   class class class wbr 3764    Or wor 4032    X. cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-po 4033  df-iso 4034  df-xp 4351
This theorem is referenced by:  son2lpi  4721  ltsonq  6496  genpdisj  6621  ltposr  6848  axpre-ltirr  6956
  Copyright terms: Public domain W3C validator