ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsstp2 Structured version   Unicode version

Theorem snsstp2 3506
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
Assertion
Ref Expression
snsstp2  { }  C_  { ,  ,  C }

Proof of Theorem snsstp2
StepHypRef Expression
1 snsspr2 3504 . . 3  { }  C_  { ,  }
2 ssun1 3100 . . 3  { ,  }  C_  { ,  }  u.  { C }
31, 2sstri 2948 . 2  { }  C_  { ,  }  u.  { C }
4 df-tp 3375 . 2  { ,  ,  C }  { ,  }  u.  { C }
53, 4sseqtr4i 2972 1  { }  C_  { ,  ,  C }
Colors of variables: wff set class
Syntax hints:    u. cun 2909    C_ wss 2911   {csn 3367   {cpr 3368   {ctp 3369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pr 3374  df-tp 3375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator