ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snon0 Unicode version

Theorem snon0 6356
Description: An ordinal which is a singleton is  { (/) }. (Contributed by Jim Kingdon, 19-Oct-2021.)
Assertion
Ref Expression
snon0  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  =  (/) )

Proof of Theorem snon0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elirr 4266 . . 3  |-  -.  A  e.  A
2 snidg 3400 . . . . . . 7  |-  ( A  e.  V  ->  A  e.  { A } )
32adantr 261 . . . . . 6  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  e.  { A } )
4 ontr1 4126 . . . . . . 7  |-  ( { A }  e.  On  ->  ( ( x  e.  A  /\  A  e. 
{ A } )  ->  x  e.  { A } ) )
54adantl 262 . . . . . 6  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( ( x  e.  A  /\  A  e.  { A } )  ->  x  e.  { A } ) )
63, 5mpan2d 404 . . . . 5  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( x  e.  A  ->  x  e.  { A } ) )
7 elsni 3393 . . . . 5  |-  ( x  e.  { A }  ->  x  =  A )
86, 7syl6 29 . . . 4  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( x  e.  A  ->  x  =  A ) )
9 eleq1 2100 . . . . 5  |-  ( x  =  A  ->  (
x  e.  A  <->  A  e.  A ) )
109biimpcd 148 . . . 4  |-  ( x  e.  A  ->  (
x  =  A  ->  A  e.  A )
)
118, 10sylcom 25 . . 3  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( x  e.  A  ->  A  e.  A ) )
121, 11mtoi 590 . 2  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  -.  x  e.  A )
1312eq0rdv 3261 1  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   (/)c0 3224   {csn 3375   Oncon0 4100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-nul 3225  df-sn 3381  df-uni 3581  df-tr 3855  df-iord 4103  df-on 4105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator