ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqbg Unicode version

Theorem sneqbg 3534
Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
sneqbg  |-  ( A  e.  V  ->  ( { A }  =  { B }  <->  A  =  B
) )

Proof of Theorem sneqbg
StepHypRef Expression
1 sneqrg 3533 . 2  |-  ( A  e.  V  ->  ( { A }  =  { B }  ->  A  =  B ) )
2 sneq 3386 . 2  |-  ( A  =  B  ->  { A }  =  { B } )
31, 2impbid1 130 1  |-  ( A  e.  V  ->  ( { A }  =  { B }  <->  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243    e. wcel 1393   {csn 3375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sn 3381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator