ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoiso Unicode version

Theorem smoiso 5917
Description: If  F is an isomorphism from an ordinal  A onto  B, which is a subset of the ordinals, then 
F is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
Assertion
Ref Expression
smoiso  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  Smo  F )

Proof of Theorem smoiso
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5447 . . . 4  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F : A -1-1-onto-> B
)
2 f1of 5126 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
31, 2syl 14 . . 3  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F : A --> B )
4 ffdm 5061 . . . . . 6  |-  ( F : A --> B  -> 
( F : dom  F --> B  /\  dom  F  C_  A ) )
54simpld 105 . . . . 5  |-  ( F : A --> B  ->  F : dom  F --> B )
6 fss 5054 . . . . 5  |-  ( ( F : dom  F --> B  /\  B  C_  On )  ->  F : dom  F --> On )
75, 6sylan 267 . . . 4  |-  ( ( F : A --> B  /\  B  C_  On )  ->  F : dom  F --> On )
873adant2 923 . . 3  |-  ( ( F : A --> B  /\  Ord  A  /\  B  C_  On )  ->  F : dom  F --> On )
93, 8syl3an1 1168 . 2  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  F : dom  F --> On )
10 fdm 5050 . . . . . 6  |-  ( F : A --> B  ->  dom  F  =  A )
1110eqcomd 2045 . . . . 5  |-  ( F : A --> B  ->  A  =  dom  F )
12 ordeq 4109 . . . . 5  |-  ( A  =  dom  F  -> 
( Ord  A  <->  Ord  dom  F
) )
131, 2, 11, 124syl 18 . . . 4  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( Ord  A  <->  Ord 
dom  F ) )
1413biimpa 280 . . 3  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A )  ->  Ord  dom  F )
15143adant3 924 . 2  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  Ord  dom  F )
1610eleq2d 2107 . . . . . . 7  |-  ( F : A --> B  -> 
( x  e.  dom  F  <-> 
x  e.  A ) )
1710eleq2d 2107 . . . . . . 7  |-  ( F : A --> B  -> 
( y  e.  dom  F  <-> 
y  e.  A ) )
1816, 17anbi12d 442 . . . . . 6  |-  ( F : A --> B  -> 
( ( x  e. 
dom  F  /\  y  e.  dom  F )  <->  ( x  e.  A  /\  y  e.  A ) ) )
191, 2, 183syl 17 . . . . 5  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( ( x  e.  dom  F  /\  y  e.  dom  F )  <-> 
( x  e.  A  /\  y  e.  A
) ) )
20 epel 4029 . . . . . . . . 9  |-  ( x  _E  y  <->  x  e.  y )
21 isorel 5448 . . . . . . . . 9  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  _E  y  <->  ( F `  x )  _E  ( F `  y ) ) )
2220, 21syl5bbr 183 . . . . . . . 8  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  e.  y  <-> 
( F `  x
)  _E  ( F `
 y ) ) )
23 ffn 5046 . . . . . . . . . . 11  |-  ( F : A --> B  ->  F  Fn  A )
243, 23syl 14 . . . . . . . . . 10  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F  Fn  A
)
2524adantr 261 . . . . . . . . 9  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  ->  F  Fn  A )
26 simprr 484 . . . . . . . . 9  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
y  e.  A )
27 funfvex 5192 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  _V )
2827funfni 4999 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( F `  y
)  e.  _V )
29 epelg 4027 . . . . . . . . . 10  |-  ( ( F `  y )  e.  _V  ->  (
( F `  x
)  _E  ( F `
 y )  <->  ( F `  x )  e.  ( F `  y ) ) )
3028, 29syl 14 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( ( F `  x )  _E  ( F `  y )  <->  ( F `  x )  e.  ( F `  y ) ) )
3125, 26, 30syl2anc 391 . . . . . . . 8  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( F `  x )  _E  ( F `  y )  <->  ( F `  x )  e.  ( F `  y ) ) )
3222, 31bitrd 177 . . . . . . 7  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  e.  y  <-> 
( F `  x
)  e.  ( F `
 y ) ) )
3332biimpd 132 . . . . . 6  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  e.  y  ->  ( F `  x )  e.  ( F `  y ) ) )
3433ex 108 . . . . 5  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( ( x  e.  A  /\  y  e.  A )  ->  (
x  e.  y  -> 
( F `  x
)  e.  ( F `
 y ) ) ) )
3519, 34sylbid 139 . . . 4  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( ( x  e.  dom  F  /\  y  e.  dom  F )  ->  ( x  e.  y  ->  ( F `  x )  e.  ( F `  y ) ) ) )
3635ralrimivv 2400 . . 3  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  A. x  e.  dom  F A. y  e.  dom  F ( x  e.  y  ->  ( F `  x )  e.  ( F `  y ) ) )
37363ad2ant1 925 . 2  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  A. x  e.  dom  F A. y  e.  dom  F ( x  e.  y  ->  ( F `  x )  e.  ( F `  y ) ) )
38 df-smo 5901 . 2  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  dom  F ( x  e.  y  ->  ( F `  x )  e.  ( F `  y
) ) ) )
399, 15, 37, 38syl3anbrc 1088 1  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  Smo  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   A.wral 2306   _Vcvv 2557    C_ wss 2917   class class class wbr 3764    _E cep 4024   Ord word 4099   Oncon0 4100   dom cdm 4345    Fn wfn 4897   -->wf 4898   -1-1-onto->wf1o 4901   ` cfv 4902    Isom wiso 4903   Smo wsmo 5900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-f1o 4909  df-fv 4910  df-isom 4911  df-smo 5901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator