ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1r1 Unicode version

Theorem simp1r1 1000
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1r1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta  /\  et )  ->  ph )

Proof of Theorem simp1r1
StepHypRef Expression
1 simpr1 910 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ph )
213ad2ant1 925 1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta  /\  et )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-3an 887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator