Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp1bi | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 |
Ref | Expression |
---|---|
simp1bi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 | |
2 | 1 | biimpi 113 | . 2 |
3 | 2 | simp1d 916 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 w3a 885 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 |
This theorem depends on definitions: df-bi 110 df-3an 887 |
This theorem is referenced by: limord 4132 smores2 5909 smofvon2dm 5911 smofvon 5914 errel 6115 lincmb01cmp 8871 iccf1o 8872 elfznn0 8975 elfzouz 9008 |
Copyright terms: Public domain | W3C validator |