Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbied Unicode version

Theorem sbied 1671
 Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 1674). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypotheses
Ref Expression
sbied.1
sbied.2
sbied.3
Assertion
Ref Expression
sbied

Proof of Theorem sbied
StepHypRef Expression
1 sbied.1 . . 3
21nfri 1412 . 2
3 sbied.2 . . 3
43nfrd 1413 . 2
5 sbied.3 . 2
62, 4, 5sbiedh 1670 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98  wnf 1349  wsb 1645 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-i9 1423  ax-ial 1427 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646 This theorem is referenced by:  sbiedv  1672  dvelimdf  1892  cbvrald  9927
 Copyright terms: Public domain W3C validator