ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbelx Unicode version

Theorem sbelx 1873
Description: Elimination of substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbelx  |-  ( ph  <->  E. x ( x  =  y  /\  [ x  /  y ] ph ) )
Distinct variable groups:    x, y    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem sbelx
StepHypRef Expression
1 ax-17 1419 . 2  |-  ( ph  ->  A. x ph )
21sb5rf 1732 1  |-  ( ph  <->  E. x ( x  =  y  /\  [ x  /  y ] ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98   E.wex 1381   [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427
This theorem depends on definitions:  df-bi 110  df-sb 1646
This theorem is referenced by:  sbel2x  1874
  Copyright terms: Public domain W3C validator