ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco3xzyz Unicode version

Theorem sbco3xzyz 1847
Description: Version of sbco3 1848 with distinct variable constraints between  x and  z, and  y and  z. Lemma for proving sbco3 1848. (Contributed by Jim Kingdon, 22-Mar-2018.)
Assertion
Ref Expression
sbco3xzyz  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco3xzyz
StepHypRef Expression
1 sbcomxyyz 1846 . 2  |-  ( [ z  /  y ] [ z  /  x ] ph  <->  [ z  /  x ] [ z  /  y ] ph )
2 sbcocom 1844 . 2  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph )
3 sbcocom 1844 . 2  |-  ( [ z  /  x ] [ x  /  y ] ph  <->  [ z  /  x ] [ z  /  y ] ph )
41, 2, 33bitr4i 201 1  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 98   [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by:  sbco3  1848
  Copyright terms: Public domain W3C validator