Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2yz Unicode version

Theorem sbco2yz 1837
 Description: This is a version of sbco2 1839 where is distinct from . It is a lemma on the way to proving sbco2 1839 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
sbco2yz.1
Assertion
Ref Expression
sbco2yz
Distinct variable group:   ,
Allowed substitution hints:   (,,)

Proof of Theorem sbco2yz
StepHypRef Expression
1 sbco2yz.1 . . . 4
21nfsb 1822 . . 3
32nfri 1412 . 2
4 sbequ 1721 . 2
53, 4sbieh 1673 1
 Colors of variables: wff set class Syntax hints:   wb 98  wnf 1349  wsb 1645 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646 This theorem is referenced by:  sbco2h  1838
 Copyright terms: Public domain W3C validator