Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcimg Unicode version

Theorem sbcimg 2804
 Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
sbcimg

Proof of Theorem sbcimg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2767 . 2
2 dfsbcq2 2767 . . 3
3 dfsbcq2 2767 . . 3
42, 3imbi12d 223 . 2
5 sbim 1827 . 2
61, 4, 5vtoclbg 2614 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98   wceq 1243   wcel 1393  wsb 1645  wsbc 2764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765 This theorem is referenced by:  sbceqal  2814  sbcimdv  2823  sbc19.21g  2826  sbcssg  3330  iota4an  4886  sbcfung  4925  riotass2  5494
 Copyright terms: Public domain W3C validator