ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbciegf Structured version   Unicode version

Theorem sbciegf 2788
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
sbciegf.1  F/
sbciegf.2
Assertion
Ref Expression
sbciegf  V  [.  ].
Distinct variable group:   ,
Allowed substitution hints:   ()   ()    V()

Proof of Theorem sbciegf
StepHypRef Expression
1 sbciegf.1 . 2  F/
2 sbciegf.2 . . 3
32ax-gen 1335 . 2
4 sbciegft 2787 . 2  V  F/  [.  ].
51, 3, 4mp3an23 1223 1  V  [.  ].
Colors of variables: wff set class
Syntax hints:   wi 4   wb 98  wal 1240   wceq 1242   F/wnf 1346   wcel 1390   [.wsbc 2758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-sbc 2759
This theorem is referenced by:  sbcieg  2789  opelopabf  4002  eqerlem  6073
  Copyright terms: Public domain W3C validator