Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbciegf Unicode version

Theorem sbciegf 2794
 Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
sbciegf.1
sbciegf.2
Assertion
Ref Expression
sbciegf
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem sbciegf
StepHypRef Expression
1 sbciegf.1 . 2
2 sbciegf.2 . . 3
32ax-gen 1338 . 2
4 sbciegft 2793 . 2
51, 3, 4mp3an23 1224 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98  wal 1241   wceq 1243  wnf 1349   wcel 1393  wsbc 2764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765 This theorem is referenced by:  sbcieg  2795  opelopabf  4011  eqerlem  6137
 Copyright terms: Public domain W3C validator