Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcie2g Unicode version

Theorem sbcie2g 2796
 Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 2797 avoids a disjointness condition on and by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
sbcie2g.1
sbcie2g.2
Assertion
Ref Expression
sbcie2g
Distinct variable groups:   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()   (,)

Proof of Theorem sbcie2g
StepHypRef Expression
1 dfsbcq 2766 . 2
2 sbcie2g.2 . 2
3 sbsbc 2768 . . 3
4 nfv 1421 . . . 4
5 sbcie2g.1 . . . 4
64, 5sbie 1674 . . 3
73, 6bitr3i 175 . 2
81, 2, 7vtoclbg 2614 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98   wceq 1243   wcel 1393  wsb 1645  wsbc 2764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765 This theorem is referenced by:  sbcel2gv  2822  csbie2g  2896  brab1  3809
 Copyright terms: Public domain W3C validator