Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc6g Unicode version

Theorem sbc6g 2788
 Description: An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
sbc6g
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem sbc6g
StepHypRef Expression
1 nfe1 1385 . . 3
2 ceqex 2671 . . 3
31, 2ceqsalg 2582 . 2
4 sbc5 2787 . 2
53, 4syl6rbbr 188 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98  wal 1241   wceq 1243  wex 1381   wcel 1393  wsbc 2764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765 This theorem is referenced by:  sbc6  2789  sbciegft  2793  ralsnsg  3407  ralsns  3408  fz1sbc  8958
 Copyright terms: Public domain W3C validator