ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb4e Structured version   Unicode version

Theorem sb4e 1683
Description: One direction of a simplified definition of substitution that unlike sb4 1710 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
sb4e

Proof of Theorem sb4e
StepHypRef Expression
1 sb1 1646 . 2
2 equs5e 1673 . 2
31, 2syl 14 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97  wal 1240  wex 1378  wsb 1642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-11 1394  ax-4 1397  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-sb 1643
This theorem is referenced by:  hbsb2e  1685
  Copyright terms: Public domain W3C validator