Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcedv Unicode version

Theorem rspcedv 2660
 Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcdv.1
rspcdv.2
Assertion
Ref Expression
rspcedv
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem rspcedv
StepHypRef Expression
1 rspcdv.1 . 2
2 rspcdv.2 . . 3
32biimprd 147 . 2
41, 3rspcimedv 2658 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   wceq 1243   wcel 1393  wrex 2307 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559 This theorem is referenced by:  rexxfrd  4195  ltexnqq  6506  halfnqq  6508  ltbtwnnqq  6513  genpml  6615  genpmu  6616  genprndl  6619  genprndu  6620  axarch  6965  apreap  7578
 Copyright terms: Public domain W3C validator