ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc3ev Unicode version

Theorem rspc3ev 2666
Description: 3-variable restricted existentional specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
rspc3v.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
rspc3v.2  |-  ( y  =  B  ->  ( ch 
<->  th ) )
rspc3v.3  |-  ( z  =  C  ->  ( th 
<->  ps ) )
Assertion
Ref Expression
rspc3ev  |-  ( ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T
)  /\  ps )  ->  E. x  e.  R  E. y  e.  S  E. z  e.  T  ph )
Distinct variable groups:    ps, z    ch, x    th, y    x, y, z, A    y, B, z    z, C    x, R    x, S, y    x, T, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y)    ch( y,
z)    th( x, z)    B( x)    C( x, y)    R( y, z)    S( z)

Proof of Theorem rspc3ev
StepHypRef Expression
1 simpl1 907 . 2  |-  ( ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T
)  /\  ps )  ->  A  e.  R )
2 simpl2 908 . 2  |-  ( ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T
)  /\  ps )  ->  B  e.  S )
3 rspc3v.3 . . . 4  |-  ( z  =  C  ->  ( th 
<->  ps ) )
43rspcev 2656 . . 3  |-  ( ( C  e.  T  /\  ps )  ->  E. z  e.  T  th )
543ad2antl3 1068 . 2  |-  ( ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T
)  /\  ps )  ->  E. z  e.  T  th )
6 rspc3v.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
76rexbidv 2327 . . 3  |-  ( x  =  A  ->  ( E. z  e.  T  ph  <->  E. z  e.  T  ch ) )
8 rspc3v.2 . . . 4  |-  ( y  =  B  ->  ( ch 
<->  th ) )
98rexbidv 2327 . . 3  |-  ( y  =  B  ->  ( E. z  e.  T  ch 
<->  E. z  e.  T  th ) )
107, 9rspc2ev 2664 . 2  |-  ( ( A  e.  R  /\  B  e.  S  /\  E. z  e.  T  th )  ->  E. x  e.  R  E. y  e.  S  E. z  e.  T  ph )
111, 2, 5, 10syl3anc 1135 1  |-  ( ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T
)  /\  ps )  ->  E. x  e.  R  E. y  e.  S  E. z  e.  T  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   E.wrex 2307
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator