Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2ev Unicode version

Theorem rspc2ev 2664
 Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.)
Hypotheses
Ref Expression
rspc2v.1
rspc2v.2
Assertion
Ref Expression
rspc2ev
Distinct variable groups:   ,,   ,   ,   ,,   ,   ,
Allowed substitution hints:   (,)   ()   ()   ()   ()

Proof of Theorem rspc2ev
StepHypRef Expression
1 rspc2v.2 . . . . 5
21rspcev 2656 . . . 4
32anim2i 324 . . 3
433impb 1100 . 2
5 rspc2v.1 . . . 4
65rexbidv 2327 . . 3
76rspcev 2656 . 2
84, 7syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   w3a 885   wceq 1243   wcel 1393  wrex 2307 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559 This theorem is referenced by:  rspc3ev  2666  opelxp  4374  rspceov  5547  2dom  6285  apreim  7594  addcn2  9831  mulcn2  9833
 Copyright terms: Public domain W3C validator