ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rr19.28v Unicode version

Theorem rr19.28v 2677
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 29-Oct-2012.)
Assertion
Ref Expression
rr19.28v
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   (,)   ()

Proof of Theorem rr19.28v
StepHypRef Expression
1 simpl 102 . . . . . 6
21ralimi 2378 . . . . 5
3 biidd 161 . . . . . 6
43rspcv 2646 . . . . 5
52, 4syl5 28 . . . 4
6 simpr 103 . . . . . 6
76ralimi 2378 . . . . 5
87a1i 9 . . . 4
95, 8jcad 291 . . 3
109ralimia 2376 . 2
11 r19.28av 2443 . . 3
1211ralimi 2378 . 2
1310, 12impbii 117 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98   wcel 1390  wral 2300
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-v 2553
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator