ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoss Unicode version

Theorem rncoss 4602
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss  |-  ran  ( A  o.  B )  C_ 
ran  A

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 4601 . 2  |-  dom  ( `' B  o.  `' A )  C_  dom  `' A
2 df-rn 4356 . . 3  |-  ran  ( A  o.  B )  =  dom  `' ( A  o.  B )
3 cnvco 4520 . . . 4  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
43dmeqi 4536 . . 3  |-  dom  `' ( A  o.  B
)  =  dom  ( `' B  o.  `' A )
52, 4eqtri 2060 . 2  |-  ran  ( A  o.  B )  =  dom  ( `' B  o.  `' A )
6 df-rn 4356 . 2  |-  ran  A  =  dom  `' A
71, 5, 63sstr4i 2984 1  |-  ran  ( A  o.  B )  C_ 
ran  A
Colors of variables: wff set class
Syntax hints:    C_ wss 2917   `'ccnv 4344   dom cdm 4345   ran crn 4346    o. ccom 4349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356
This theorem is referenced by:  cossxp  4843  fco  5056
  Copyright terms: Public domain W3C validator