ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotass Unicode version

Theorem riotass 5495
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotass  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem riotass
StepHypRef Expression
1 reuss 3218 . . . 4  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  E! x  e.  A  ph )
2 riotasbc 5483 . . . 4  |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )
31, 2syl 14 . . 3  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )
4 simp1 904 . . . . 5  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  A  C_  B
)
5 riotacl 5482 . . . . . 6  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  A )
61, 5syl 14 . . . . 5  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  e.  A )
74, 6sseldd 2946 . . . 4  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  e.  B )
8 simp3 906 . . . 4  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  E! x  e.  B  ph )
9 nfriota1 5475 . . . . 5  |-  F/_ x
( iota_ x  e.  A  ph )
109nfsbc1 2781 . . . . 5  |-  F/ x [. ( iota_ x  e.  A  ph )  /  x ]. ph
11 sbceq1a 2773 . . . . 5  |-  ( x  =  ( iota_ x  e.  A  ph )  -> 
( ph  <->  [. ( iota_ x  e.  A  ph )  /  x ]. ph ) )
129, 10, 11riota2f 5489 . . . 4  |-  ( ( ( iota_ x  e.  A  ph )  e.  B  /\  E! x  e.  B  ph )  ->  ( [. ( iota_ x  e.  A  ph )  /  x ]. ph  <->  (
iota_ x  e.  B  ph )  =  ( iota_ x  e.  A  ph )
) )
137, 8, 12syl2anc 391 . . 3  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( [. ( iota_ x  e.  A  ph )  /  x ]. ph  <->  (
iota_ x  e.  B  ph )  =  ( iota_ x  e.  A  ph )
) )
143, 13mpbid 135 . 2  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  B  ph )  =  ( iota_ x  e.  A  ph ) )
1514eqcomd 2045 1  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   E.wrex 2307   E!wreu 2308   [.wsbc 2764    C_ wss 2917   iota_crio 5467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-uni 3581  df-iota 4867  df-riota 5468
This theorem is referenced by:  moriotass  5496
  Copyright terms: Public domain W3C validator