ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaprop Structured version   Unicode version

Theorem riotaprop 5434
Description: Properties of a restricted definite description operator. Todo (df-riota 5411 update): can some uses of riota2f 5432 be shortened with this? (Contributed by NM, 23-Nov-2013.)
Hypotheses
Ref Expression
riotaprop.0  F/
riotaprop.1  iota_
riotaprop.2
Assertion
Ref Expression
riotaprop
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem riotaprop
StepHypRef Expression
1 riotaprop.1 . . 3  iota_
2 riotacl 5425 . . 3  iota_
31, 2syl5eqel 2121 . 2
41eqcomi 2041 . . . 4  iota_
5 nfriota1 5418 . . . . . 6  F/_ iota_
61, 5nfcxfr 2172 . . . . 5  F/_
7 riotaprop.0 . . . . 5  F/
8 riotaprop.2 . . . . 5
96, 7, 8riota2f 5432 . . . 4  iota_
104, 9mpbiri 157 . . 3
113, 10mpancom 399 . 2
123, 11jca 290 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98   wceq 1242   F/wnf 1346   wcel 1390  wreu 2302   iota_crio 5410
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-sn 3373  df-pr 3374  df-uni 3572  df-iota 4810  df-riota 5411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator